Tuesday, March 24, 2009

HARDY-WEINBERG

En genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibro de Hardy-Weinberg o ley de Hardy-Weinberg), que recibe su nombre de G. H. Hardy y Wilhelm Weinberg, establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación.


Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo.En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.

Wednesday, March 11, 2009

Saturday, March 7, 2009

GENES LETALES

Los genes letales son una especie de genes mutantes y representan la forma más extrema de una serie que recibe la viabilidad en diferentes grados; es decir, son aquellos que provocan la muerte del organismo bajo ciertas condiciones.
Primero, hay que definir ciertos términos claves para entender el tema. Los cromosomas se dan, normalmente, en pares. Estos contienen genes y a cada par de ellos, localizados en el mismo lugar del cromosoma (locus) se les llama alelos y a dichos cromosomas, homólogos. Ahora, un heterocigoto es aquel individuo cuyos alelos difieren para una determinada característica (Aa, por ejemplo). En consecuencia, un homocigoto es aquel que tiene los alelos iguales (AA o aa). En los primeros, uno de los genes es dominante (A) y el otro recesivo (a), por tanto la característica dominante es la que se manifestará. Por su parte, los homocigotos, como sus genes son iguales, o es 100% dominante o 100% recesivo.
Al contrario de lo que se piense, los genes letales son más comunes de lo que parece. Cada ser humano porta, aproximadamente, 2 o 4 de ellos, pero el hecho de que estemos protegidos se lo debemos a ser heterocigotos para esos genes (pues los genes letales casi siempre son recesivos). Además, existen tantas clases de estos que es muy difícil que coincida una pareja con los mismos alelos que codifiquen para una misma enfermedad. Sin embargo, se da el caso. Ambas personas son heterocigotas, por lo que no presentan síntomas. Entonces, si tienen descendencia, ésta tenderá a morir en un 25% de los casos, probabilísticamente hablando, ya sea al nacer o posteriormente. La frecuencia de la expresión de los genes letales aumenta con la cercanía del parentesco entre la pareja, por lo que la unión entre primos-hermanos tiende más a presentar problemas de este tipo.
Por otro lado, la letalidad también tiene un período de efecto, el cual es muy variable. Existen casos donde, en el embrión, no se logran formar adecuadamente los órganos vitales, por lo que se produce un aborto espontáneo. También hay los que impiden la formación de gametos, la división normal del cigoto, los que matan enseguida del nacimiento o bien tiempo después, siendo estos últimos los más estudiados por ser observables "fácilmente". Un caso muy conocido es la hemofilia, enfermedad que impide la correcta coagulación sanguínea. En ella, el gen letal se encuentra ligado al cromosoma X de la madre. Por ello, las mujeres son portadoras del padecimiento y los varones son enfermos. Lo anterior se debe a que las mujeres son XX, por lo cual la letalidad es recesiva pues se halla otro cromosoma X que "amortigua" la deficiencia y protege al organismo, mientras que en el varón, XY, la letalidad es dominante, pues el cromosoma Y no posee tal protección, haciendo al X y a la enfermedad dominantes.

Friday, March 6, 2009

ESTRUCTURA DE NUCLEÓTIDOS

Los nucleótidos son moléculas orgánicas formadas por la unión covalente de un monosacárido de cinco carbonos (pentosa), una base nitrogenada y un grupo fosfato.
Son los monómeros de los ácidos nucleicos (ADN y ARN) en los cuales forman cadenas lineales de miles o millones de nucleótidos, pero también realizan funciones importantes como moléculas libres (por ejemplo, el ATP).


Cada nucleótido es un ensamblado de tres componentes:


Bases Nitrogenadas: Derivan de los compuestos heterocíclicos aromáticos purina y pirimidina.

Bases Nitrogenadas Purínicas: Son la adenina (A) y la guanina (G). Ambas forman parte del ADN y del ARN.


Bases Nitrogenadas Pirimidínicas: Son la timina (T), la citosina (C) y el uracilo (U). La timina y la citosina intervienen en la formación del ADN. En el ARN aparecen la citosina y el uracilo.


Bases Nitrogenadas Isoaloxacínicas: La flavina (F). No forma parte del ADN o del ARN, pero sí de algunos compuestos importantes como el FAD


Pentosa: El azúcar de cinco átomos de carbono; puede ser ribosa (ARN) o desoxirribosa (ADN).


Ácido Fosfórico: De fórmula H3PO4. Cada nucleótido puede contener uno (nucleótidos-monofosfato, como el AMP), dos (nucleótidos-difosfato, como el ADP) o tres (nucleótidos-trifosfato, como el ATP) grupos fosfato.

RECOMBINACION GENETICA EN BACTERIAS

La recombinación genética en bacterias tiene lugar cuando se transfieren fragmentos de DNA homólogo desde una célula donadora a una célula receptora por uno de estos tres procesos:


1.- Transformación: supone que el DNA donador se encuentra libre en el medio.


2.- Transducción: donde la transferencia del DNA donador está mediada por un virus.


3.- Conjugación: donde la transferencia implica un contacto célula-célula y la presencia de un plásmido conjugativo en la célula donadora.

USO DE BACTERIOFAGOS

Los bacteriófagos (también llamados fagos -del griego φαγετον (phageton), alimento/ingestión) son virus que infectan exclusivamente a bacterias.
Al igual que los virus que infectan células eucariotas, los fagos están constituidos por una cubierta proteica o cápside en cuyo interior está contenido su material genético, que puede ser ADN o ARN de simple o doble cadena, circular o lineal (en el 95% de los fagos conocidos es ADN de doble cadena), de 5.000 a 500.000 pares de bases. El tamaño de los fagos oscila entre 20 y 200 nm aproximadamente.
Los fagos son ubicuos y pueden ser encontrados en diversas poblaciones de bacterias, tanto en el suelo como en la flora intestinal de los animales. Uno de los ambientes más poblados por fagos y otros virus es el agua de mar, donde se estima que
puede haber en torno a 109 partículas virales por mililitro, pudiendo estar infectadas por fagos el 70% de las bacterias marinas.
Terapia fágica
Los fagos cumplen un papel de gran importancia en la biología molecular al ser utilizados como vectores de clonación para insertar ADN dentro de las bacterias y obtener como resultado bibliotecas genómicas. Hay una biblioteca de búsqueda de fagos específicos y sus usos terapéuticos en el Instituto Tbilisi, en la República de Georgia. La terapia fágica ha sido utilizada desde la década de 1940 en la ex Unión Soviética como una alternativa a los antibióticos para tratar infecciones bacterianas, ya que eliminar bacterias es lo que los fagos hacen mejor. El desarrollo de cepas bacterianas resistentes a múltiples drogas ha conducido a investigadores en medicina a reconsiderar a los fagos como una alternativa al uso de antibióticos.

OTROS USOS


En agosto de 2006, la FDA (Food and Drug Administration) de Estados Unidos aprobó el uso de bacteriófagos en ciertas carnes con el fin de acabar con la bacteria

ESTRUCTURA DE LAS HISTONAS

Las histonas son proteínas básicas, de baja masa molecular, muy conservadas evolutivamente entre los eucariotas y en algunos procariotas. Forman la cromatina junto con el ADN, sobre la base de unas unidades conocidas como nucleosomas.
Las cuatro histonas core, o nucleares, forman un octámero (paquetes de 8 moléculas) alrededor del cual se enrolla el ADN, en una longitud variable en función del organismo. Este octámero se ensambla a partir de un tetrámero de las histonas llamadas H3 y H4, al que se agregan dos heterodímeros de las histonas denominadas H2A y H2B. Las histonas externas, o linker, H1 (y H5 en aves) interaccionan con el ADN internucleosomal. El conjunto del ADN enrollado alrededor del octámero de histonas, junto con la histona H1 y una cierta longitud de ADN linker, o internucleosomal constituye lo que se conoce como nucleosoma. Las histonas core desarrollan un papel decisivo en el primer nivel de compactación del ADN dentro del núcleo, en la estructura conocida como nucleosoma. Las histonas linker, por otro lado, producen un empaquetamiento de orden superior de los nucleosomas.
Las histonas contienen un motivo estructural muy importante para los contactos moleculares dentro del octámero de histonas core, denominado histone fold (se podría traducir como pliegue de histona). Este motivo consiste en 65 aminoácidos que se estructuran en una organización extendida tipo hélice-hoja-hélice. En concreto, contiene una corta hélice alfa, un giro/hoja beta, una hélice alfa larga, otro giro/hoja beta, y otra hélice alfa corta.
Las histonas core pueden ser modificadas covalente y post-traduccionalmente, en general en sus extremos amino-terminales, mediante reacciones catalizadas por una serie de actividades enzimáticas. Éstas pueden ser citoplasmáticas, y actúan sobre las histonas previamente a su ensamblamiento en los nucleosomas, o bien, nucleares y afectan a histonas nucleosomales. Se ha postulado una teoría denominada histone code, o "código de histonas", según la que estas modificaciones pueden tener consecuencias en cuanto a: 1) La facilidad con la que proteínas asociadas a cromatina (factores transcripcionales, etc ...) podrían acceder al ADN. 2) La generación de combinaciones de modificaciones en un extremo de histona, o en varios dentro de un nucleosoma. 3) Las estructuras de eucromatina y heterocromatina serán en mayor medida dependientes de las concentraciones locales de histonas modificadas. En conclusión, estas modificaciones podrían extender la información potencial del material genético.

DUPLICACIÓN DEL ADN EN EUCARIOTAS

Es similar a la de los procariontes, es decir, semiconservativa y bidireccional. Existe una hebra conductora y una hebra retardada con fragmentos de Okazaki. Se inicia en la burbujas de replicación (puede haber unas 100 a la vez).

Intervienen enzimas similares a los que actúan en las células procariontes y otros enzimas que han de duplicar las histonas que forman parte de los nucleosomas. Los nucleosomas viejos permanecen en la hebra conductora.

MECANISMO DE DUPLICACIÓN DEL ADN EN PROCARIONTES

Hay que recordar que el ADN es cerrado y circular y ocurre en tres etapas:
1ª ETAPA
Desenrrollamiento y apertura de la doble hélice en el punto ori-c.
Intervienen un grupo de enzimas y proteínas, cuyo conjunto se denomina replisoma.
•Primero: intervienen las helicasas que facilitan en desenrrollamiento
•Segundo: actúan las girasas y topoisomerasas que eliminan la tensión generada por la torsión en el desenrrollamiento.
•Tercero: actúan las proteínas SSBP que se unen a las hebras molde para que no vuelva a enrollarse.
2ª ETAPA
Síntesis de dos nuevas hebras de ADN.
•Actúan las ADN polimerasas para sintetizar las nuevas hebras en sentido 5´-3´, ya que la lectura se hace en el sentido 3´-5´.
•Intervienen las ADN polimerasa I y III, que se encargan de la replicación y corrección de errores. La que lleva la mayor parte del trabajo es la ADN polimerasa III
•Actúa la ADN polimerasa II, corrigiendo daños causados por agentes físicos.
La cadena 3´-5´ es leída por la ADN polimerasa III sin ningún tipo de problemas ( cadena conductora). En cambio, la cadena 5´-3´ no puede ser leída directamente, esto se soluciona leyendo pequeños fragmentos ( fragmentos de Okazaki ) que crecen en el sentido 5´-3´, los cuales se unirán mas tarde. Esta es la hebra retardada, llamada de esta forma porque su síntesis es más lenta.
La ADN polimerasa III es incapaz de iniciar la síntesis por sí sola, para esto necesita un cebador (ARN) que es sintetizado por una ARN polimerasa (=primasa). Este cebador es eliminado posteriormente.

3ª ETAPA
corrección de errores.
La enzima principal es la ADN polimerasa III, que corrige todos los errores cometidos en la replicación o duplicación. Intervienen otros enzimas como:
•Endonucleasas que cortan el segmento erróneo.
•ADN polimerasas I que rellenan correctamente el hueco.
•ADN ligasas que unen los extremos corregidos

DUPLICACION DEL ADN

Se dieron muchas hipótesis sobre cómo se duplicaba el ADN hasta que Watson y Crick propusieron la hipótesis semiconservativa (posteriormente demostrada por Meselson Y Stahl en 1957), según la cual, las nuevas moléculas de ADN formadas a partir de otra antigua, tienen una hebra antigua y otra nueva.

Wednesday, March 4, 2009

ETAPAS DE LA TRANSCRIPCION

PREINICIACION
Al contrario que para la replicación de ADN, durante el inicio de la transcripción no se requiere la presencia de un cebador para sintetizar la nueva cadena, de ARN en este caso. Antes del inicio de la transcripción se necesitan toda una serie de factores de transcripción que ejercen de factores de iniciación, que se unen a secuencias específicas de ADN para reconocer el sitio donde la transcripción ha de comenzar y se sintetice el ARN cebador. Esta secuencia de ADN en la que se ensamblan los complejos de transcripción se llama promotor. Los promotores se localizan en los extremos 5'-terminales de los genes, antes del comienzo del gen, y a ellos se unen los factores de transcripción mediante fuerzas de Van der Waals y enlaces de hidrógeno. Los promotores tienen secuencias reguladoras definidas, muy conservadas en cada especie, donde las más conocidas son la caja TATA (situada sobre la región -10 -30), con la secuencia consenso TATA(A/T)A(A/T); y la caja CAAT (situada en un punto anterior). La formación del complejo de transcripción se realiza sobre el promotor TATA, allí se forma el núcleo del complejo de iniciación. Sobre la caja TATA se fija una proteína de unión (TBP) junto con el factor de transcripción TFII D (TF proviene del inglés: transcription factor). Después, a ellos se unen otros factores de transcripción específicos: TFII A, que estabiliza el complejo TFII D-ADN; los factores TFII B y TFII E se unen al ADN y el TFII F (una helicasa dependiente de ATP) y al final la ARN polimerasa. Todo ello forma un complejo que se llama complejo de preiniciación cerrado. Cuando la estructura se abre por mediación del factor de transcripción TFII H, da comienzo la iniciación.

INICIACION

La ARN polimerasa simplemente se une al ADN y separa las hebras de ADN en colaboración con otros cofactores permitiendo, de esta manera, el acceso de la ARN polimerasa al molde de ADN de cadena simple. Aunque la búsqueda del promotor por la ARN polimerasa es muy rápida, la formación de la burbuja de transcripción o apertura del ADN y la síntesis del cebador es muy lenta. La burbuja de transcripción es una apertura de ADN desnaturalizado de 18 pares de bases, donde empieza a sintetizarse el ARN cebador a partir del nucleótido número 10 del ADN molde de la burbuja de transcripción. La burbuja de transcripción se llama complejo abierto. La ARN polimerasa es una enzima formada por 5 subunidades: 2 subunidades α, 1 subunidad β, 1 subunidad β' y 1 subunidad ω que tiene como función la unión de
ribonucleótidos trifosfato. Cuando se forma el complejo abierto, la ARN polimerasa comienza a unir ribonucleótidos mediante enlaces fosfodiéster, y una vez que se forma el primer enlace fosfodiéster, acaba la etapa de iniciación.

DISGREGACION DEL PROMOTOR

Una vez sintetizado el primer enlace fosfodiéster, se debe deshacer el complejo del promotor para que quede limpio para volver a funcionar de nuevo. Durante esta fase hay una tendencia a desprenderse el transcrito inicial de ARN y producir transcritos truncados, dando lugar a una iniciación abortada, común tanto en procariotas como eucariotas. Una vez que la cadena transcrita alcanza una longitud de unos 23 nucleótidos, el complejo ya no se desliza y da lugar a la siguiente fase, la elongación.
La disgregación del promotor coincide con una fosforilación de la serina 5 del dominio carboxilo terminal de la ARN polimerasa, que es fosforilado por el TFII H (que es una proteína quinasa dependiente de ATP)

ELONGACION

La ARN polimerasa cataliza la elongación de cadena del ARN. Una cadena de ARN se une por apareamiento de bases a la cadena de ADN, y para que se formen correctamente los enlaces de hidrógeno que determina el siguiente nucleótido del molde de ADN, el centro activo de la ARN polimerasa reconoce a los ribonucleótidos trifosfato entrantes. Cuando el nucleótido entrante forma los enlaces de hidrógeno idóneos, entonces la ARN polimerasa cataliza la formación del enlace fosfodiéster que corresponde. A esto se le llama elongación, la segunda etapa de la transcripción del ARN.

TERMINACION
Al finalizar la síntesis de ARNm, esta molécula ya se ha separado completamente del ADN (que recupera su forma original) y también de la ARN polimerasa, terminando la transcripción. La terminación es otra etapa distinta de la transcripción, porque justo cuando el complejo de transcripción se ha ensamblado activamente debe desensamblarse una vez que la elongación se ha completado. La terminación está señalizada por la información contenida en sitios de la secuencia del ADN que se está transcribiendo, por lo que la ARN polimerasa se detiene al transcribir algunas secuencias especiales del ADN. Estas secuencias son ricas en guanina y citosina, situadadas en el extremo de los genes, seguidas de secuencias ricas en timina, formando secuencias palindrómicas, que cuando se transcriben el ARN recién sintetizado adopta una estructura en horquilla que desestabiliza el complejo ARN-ADN, obligando a separarse de la ARN polimerasa, renaturalizándose la burbuja de transcripción. Algunas secuencias de ADN carecen de la secuencia de terminación, sino que poseen otra secuencia a la que se unen una serie de proteínas reguladoras específicas de la terminación de la transcripción como rho esta información no es del todo confiable.

TRANSCRIPCION GENETICA


La transcripción del ADN es el primer proceso de la expresión genética, mediante el cuál se transfiere la información contenida en la secuencia del ADN hacia la secuencia de proteína utilizando diversos ARN como intermediarios. Durante la transcripción genética, las secuencias de ADN son copiadas a ARN mediante una enzima llamada ARN polimerasa que sintetiza un ARN mensajero que mantiene la información de la secuencia del ADN. De esta manera, la transcripción del ADN también podría llamarse síntesis del ARN mensajero.


CADENAS ANTIPARALELAS

Los extremos de cada una de las hebras del ADN son denominados 5’-P (fosfato) y 3’–OH (hidroxilo) en la desoxirribosa. Las dos cadenas se alinean en forma paralela, pero en direcciones inversas (una en sentido 5’ → 3’ y la complementaria en el sentido inverso), pues la interacción entre las dos cadenas está determinada por los puentes de hidrógeno entre sus bases nitrogenadas. Se dice, entonces, que las cadenas son antiparalelas.

LA ESTRUCTURA BASICA DEL DNA



Aunque la DNA se conoce como " la molécula de la herencia", las macromoléculas de la DNA no se encuentran generalmente en naturaleza como moléculas totalmente solas pero como los pares de moléculas complementarias conectaron juntos para formar una hélice doble.
La DNA es un doble straned la hélice con los hilos del anti-parralel. Dos moléculas complementarias de la DNA son ligadas por 4-pegan el arreglo. Interesante con la DNA, cualquier hilo contiene toda la información esencial para la réplica de la DNA. El estado trenzado doble es realmente un "estado de reclinación". Durante el relication y la transcripción de la DNA, las regiones de la DNA pueden existir como solas formas trenzadas.


Diagrama 1. La estructura de la DNA. Observe la hélice doble de la DNA integrada por el antiparallel dos y los hilos elogiosos del ácido deoxyribonucleic. Cada base nitrogenada ata a través del hidrógeno que pega a una base nitrogenada complementaria (A ata a T, y C ata a B y viceversa)La DNA tiene estructura secundaria significativa. Cada hélice doble de la DNA consiste en encadenamientos químicamente conectados de nucleotides. Cada nucleotide en la DNA consiste en un azúcar, un grupo del fosfato, y un nucleobase (o base). Pues la DNA se compone de subunidades múltiples del nucleotide, la DNA es también un polímero de nucleotides. Las unidades del azúcar forman la pieza de la espina dorsal externa polar hydrophillic del azu'car-fosfato. Los nucleotides forman una base hidrofóbica de bases: Adenina o A, Thymine o T, guanine o G, cytosine o C.

CONSTITUCION DEL DNA

El ácido desoxirribonucleico(polímero de unidades menores denominados nucleótidos) junto con el ácido ribonucleico, constituye la porción prostética de los nucleoproteidos, cuyo nombre tiene un contexto histórico, ya que se descubrieron en el núcleo de la célula. Se trata de una molécula de gran peso molecular (macromolécula) que está constituida por tres sustancias distintas: ácido fosfórico, un monosacárido aldehídico del tipo pentosa (la desoxirribosa), y una base nitrogenada cíclica que puede ser púrica (adenina ocitosina) o pirimidínica (timina o guanina). La unión de la base nitrogenada (citosina, adenina, guanina o timina) con la pentosa (desoxirribosa) forma un nucleósido; éste, uniéndose al ácido fosfórico, nos da un nucleótido; la unión de los nucleótidos entre sí en enlace diester nos da el polinucleótido, en este caso el ácido desoxirribonucleico. Las bases nitrogenadas se hallan en relación molecular 1:1, la relación adenina + timina / guanina + citosina es de valor constante para cada especie animal. Estructuralmente la molécula de ADN se presente en forma de dos cadenas helicoidales arrolladas alrededor de un mismo eje (imaginario); las cadenas están unidas entre sí por las bases que la hacen en pares. Los apareamientos son siempre adenina-timina y citosina-guanina. El ADN es la base de la herencia.