Wednesday, November 12, 2008

EL BIG BANG

Durante casi todo el transcurso de la historia de la Física y de la Astronomía modernas no hubo fundamentos adecuados, de observación y teóricos, sobre los cuales construir una historia del Universo primitivo. Desde mediados de la década del ‘60, todo esto ha cambiado. Se ha difundido la aceptación de una teoría sobre el Universo primitivo que los astrónomos suelen llamar “el modelo corriente”. Es muy similar a lo que a veces se denomina la teoría del Big Bang o “Gran explosión”, pero complementada con indicaciones mucho más específicas sobre el contenido del Universo. Si escuchamos el silbato de un tren que se aleja rápidamente, su silbido nos parecerá más grave que si el tren estuviera quieto.
El sonido parece tener una mayor longitud de onda cuando el tren se aleja. Esta situación corresponde al fenómeno señalado primeramente por Johann Doppler en 1842. De la misma manera, la luz de una fuente que se aleja es percibida como si tuviese una longitud mayor: si el color original fuera naranja, la luz se percibiría más rojiza. Esto se llama “corrimiento hacia el rojo” y es una manifestación del efecto Doppler en las ondas luminosas.
Ciertos análisis de la luz proveniente de estrellas y galaxias muestran que, en la inmensa mayoría de los casos, hay un corrimiento hacia el rojo. Esto puede explicarse suponiendo un Universo en expansión en el que cada galaxia se aleja de las otras; como si fuese el resultado de algún género de explosión. A mediados de los años ‘60, A. Penzias y R. Wilson detectaron ondas de radio de longitudes cercanas a los 10 cm (microondas), procedentes del espacio exterior con una particularidad singular. La intensidad de estas señales era la misma independientemente de la dirección en que se situara la antena. Por lo tanto, no podían ser adjudicadas a ninguna estrella, galaxia o cuerpo estelar en particular. Estas microondas parecían llenar todo el espacio y ser equivalentes a la radiación emitida por un cuerpo negro a 3K. Los astrofísicos teóricos comprendieron que esta “radiación cósmica de fondo de microondas” era compatible con la suposición de que en el pasado el Universo era muy denso y caliente. En el comienzo hubo una explosión. No como las que conocemos en la Tierra, que parten de un centro definido y se expanden hasta abarcar una parte más o menos grande del aire circundante, sino una explosión que se produjo simultáneamente en todas partes, llenando desde el comienzo todo el espacio y en la que cada partícula de materia se alejó rápidamente de toda otra partícula. “Todo el espacio”, en este contexto, puede significar, o bien la totalidad de un Universo infinito, o bien la totalidad de un Universo finito que se curva sobre sí mismo como la superficie de una esfera. Ninguna de estas posibilidades es fácil de comprender, pero esto no debe ser un obstáculo; en el Universo primitivo, importa poco que el espacio sea finito o infinito. Al cabo de un centésimo de segundo aproximadamente, que es el momento más primitivo del que podemos hablar con cierta seguridad, la temperatura fue de unos cien mil millones (1011) de grados centígrados. Se trata de un calor mucho mayor aún que el de la estrella más caliente, tan grande, en verdad, que no pueden mantenerse unidos los componentes de la materia ordinaria: moléculas, átomos, ni siquiera núcleos de átomos. En cambio, la materia separada en esta explosión consistía en diversos tipos de las llamadas partículas elementales, que son el objeto de estudio de la moderna Física nuclear de altas energías. Un tipo de partícula presente en gran cantidad era el electrón, partícula con carga negativa que fluye por los cables transportadores de corriente eléctrica y constituye las partes exteriores de todos los átomos y moléculas del Universo actual. Otro tipo de partículas que abundaban en tiempos primitivos era el positrón, partícula de carga positiva que tiene la misma masa que el electrón. En el Universo actual, sólo se encuentran positrones en los laboratorios de altas energías, en algunas especies de radiactividad y en los fenómenos astronómicos violentos, como los rayos cósmicos y las supernovas; pero en el Universo primitivo el número de positrones era casi exactamente igual al número de electrones. Además de los electrones y los positrones, había cantidades similares de diversas clases de neutrinos, fantasmales partículas que carecen de masa y carga eléctrica. Finalmente, el Universo estaba lleno de fotones de luz. Estas partículas eran generadas continuamente a partir de la energía pura, y después de una corta vida, eran aniquiladas nuevamente. Su número, parlo tanto, no estaba prefijado, sino que lo determinaba el balance entre los procesos de creación y de aniquilamiento.

Wednesday, November 5, 2008

FACTORES QUE AFECTAN UNA POBLACION

TASA BRUTA DE NATALIDAD
En Demografía, la tasa bruta de natalidad o simplemente tasa de natalidad es una medida de cuantificación de la fecundidad, que refiere a la relación que existe entre el número de nacimientos ocurridos en un cierto periodo de tiempo y la cantidad total de efectivos del mismo periodo. El lapso es casi siempre un año, y se puede leer como el número de nacimientos de una población por cada mil habitantes en un año.

Países según su tasa bruta de natalidad
Su fórmula es:

Donde:
b:Tasa bruta de natalidad
B: Número total de nacimientos (en un periodo de tiempo)
N: Población total



Tiene la ventaja de ser una medida sencilla y fácil de interpretar, pero adolece de algunas dificultades, pues en la comparación entre países puede arrojar diferencias que dependen más de la estructura por edad y sexo de la población que de la fecundidad de las poblaciones analizadas. Para ese efecto se recomienda usar tasas refinadas, como la tasa de fecundidad general o la estructura de fecundidad por edad.
La tasa de fertilidad es el promedio de hijos por madre y la población disminuye cuando es menor de dos.
En conclusión la tasa de natalidad corresponde al número de nacidos vivos por cada 1.000 habitantes en un lugar específico.

TASA BRUTA DE MORTALIDAD
La mortalidad es un término demográfico que designa un número proporcional de muertes en una población y tiempo determinado.


Así, se define la tasa bruta de mortalidad como el indicador demográfico que señala el número de defunciones de una población por cada mil habitantes, durante un periodo de tiempo determinado generalmente un año.
Formula:

donde:
m: tasa de mortalidad
F: cantidad de fallecimientos en un lapso
P: población total

Tasa bruta de mortalidad por país
Se considera:
Alta tasa de mortalidad si supera el 30 ‰.
Moderada tasa de mortalidad entre 15 y 30 ‰.
Baja tasa de mortalidad por debajo del 15 ‰.
Generalmente en los países menos desarrollados la tasa de mortalidad y natalidad es más alta, mientras que en los más desarrollados la tasa de mortalidad y natalidad es más baja.
La tasa de mortalidad está inversamente relacionada con la esperanza de vida al nacer, de tal manera que cuanta más esperanza de vida tenga un individuo en su nacimiento, menos tasa de mortalidad tiene la población.
Al igual que hay tasas brutas de mortalidad hay tasas específicas de mortalidad, que son las tasas específicas para cada edad.

INMIGRACION
Inmigración es la entrada a un país de personas que nacieron o proceden de otro lugar. Representa una de las dos opciones o alternativas del término migración, que se aplica a los movimientos de personas de un lugar a otro y estos desplazamientos conllevan un cambio de residencia bien sea temporal o definitivo. Las dos opciones de los movimientos migratorios son: emigración, que es la salida de personas de un país, región o lugar determinados para dirigirse a otro distinto e inmigración, que es la entrada en un país, región o lugar determinados procedentes de otras partes. De manera que una emigración lleva como contrapartida posterior una inmigración en el país o lugar de llegada.
Así pues, resulta válido estudiar la inmigración desde el punto de vista del país de acogida o más bien de entrada, ya que la situación es muy diferente e incluso a menudo opuesta a la del país o lugar de emigración. Una enorme gama de situaciones políticas y problemas se plantea por la casi siempre inevitable diferenciación cultural, económica y social existente entre las poblaciones inmigrantes y las del país de recepción, e incluso entre los mismos inmigrantes cuando proceden de países y hasta de continentes distintos.

EMIGRACION
La emigración consiste en dejar el propio país o la propia región para establecerse en otro sitio. Forma parte del concepto más amplio de las migraciones de población.

Emigrantes europeos desembarcando en Ellis Island (Isla Ellis) en Nueva York (EE. UU.), en 1902.
Los países que registran más emigración en la actualidad son los pertenecientes al denominado Tercer Mundo o países en vías de desarrollo, pero en otras épocas fueron los europeos quienes emigraron a otras naciones en busca de una vida mejor.
Las emigraciones han llegado a ser uno de los problemas más graves que enfrenta hoy la humanidad, por la precariedad en que deben vivir millones de desplazados.
Las razones que empujan a las personas a emigrar de sus países son generalmente complejas y diversas. Estos son los casos más frecuentes:
Ser una persona o un grupo perseguidos en su país por razones raciales, políticas, religiosas o de identidad sexual.
Agotamiento o aparición de recursos naturales.
Buscar mejores expectativas de vida.
Razones medioambientales (catástrofes naturales, etc.)

Friday, October 31, 2008

Wednesday, October 29, 2008

PRINCIPIO DE HARDY - WEINBERG

En genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibro de Hardy-Weinberg o ley de Hardy-Weinberg), que recibe su nombre de G. H. Hardy y Wilhelm Weinberg, establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación.
Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo.En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.

LA CADENA TROFICA

La cadena trófica, o también conocida como cadena alimentaria, es la corriente de energía y nutrientes que se establece entre las distintas especies de un ecosistema en relación con su nutrición.Niveles tróficos de un ecosistema En una biocenosis o comunidad biológica existen:Productores primarios, autótrofos, que utilizando la energía solar (fotosíntesis) o reacciones químicas minerales (quimiosíntesis) obtienen la energía necesaria para fabricar materia orgánica a partir de nutrientes inorgánicos.Consumidores, heterótrofos, que producen sus componentes a partir de la materia orgánica procedente de otros seres vivos.


Las especies consumidoras pueden ser, si las clasificamos por la modalidad de explotación del recurso:Predadores. Organismos que ingieren el cuerpo de sus presas, entero o en parte. Esta actividad puede llamarse y se llama a veces predación, pero es más común ver usado este término sólo para la actividad de los carnívoros, es decir, los consumidores de segundo orden o superior (ver más abajo).Descomponedores y detritívoros. Los primeros son aquellos organismos saprotrofos, como bacterias y hongos, que aprovechan los residuos por medio de digestión externa seguida de absorción (osmotrofia).


Los detritívoros son algunos protistas y pequeños animales, que devoran (fagotrofia) los residuos sólidos que encuentran en el suelo o en los sedimentos del fondo, así como animales grandes que se alimentan de cadáveres, que es a los que se puede llamar propiamente carroñeros.Parásitos y comensales. Los parásitos pueden ser depredados, como lo son los pulgones de las plantas por mariquitas, o los parásitos de los grandes herbívoros africanos, depredados por picabueyes y otras aves. Los parásitos suelen a su vez tener sus propios parásitos, de manera que cada parásito primario puede ser la base de una cadena trófica especial de parásitos de distintos órdenes.


Si examinamos el nivel trófico más alto de entre los organismos explotados por una especie, atribuiremos a ésta un orden en la cadena de transferencias, según el número de términos que tengamos que contar desde el principio de la cadena:Consumidores primarios, los fitófagos o herbívoros. Devoran a los organismos autótrofos, principalmente plantas o algas, se alimentan de ellos de forma parásita, como hacen por ejemplo los pulgones, son comensales o simbiontes de plantas, como las abejas, o se especializan en devorar sus restos muertos, como los ácaros oribátidos o los milpiés.


Consumidores secundarios, los zoófagos o carnívoros, que se alimentan directamente de consumidores primarios, pero también los parásitos de los herbívoros, como por ejemplo el ácaro Varroa, que parasitiza a las abejas.Consumidores terciarios, los organismos que incluyen de forma habitual consumidores secundarios en su fuente de alimento. En este capítulo están los animales dominantes en los ecosistemas, sobre los que influyen en una medida muy superior a su contribución, siempre escasa, a la biomasa total. En el caso de los grandes animales cazadores, que consumen incluso otros depredadores, les corresponde ser llamados superpredadores (o superdepredadores). En ambientes terrestres son, por ejemplo, las aves de presa y los grandes felinos y cánidos. Éstos siempre han sido considerados como una amenaza para los seres humanos, por padecer directamente su predación o por la competencia por los recursos de caza, y han sido exterminados de manera a menudo sistemática y llevados a la extinción en muchos casos. En este capítulo entrarían también, además de los predadores, los parásitos y comensales de los carnívoros.En realidad puede haber hasta seis o siete niveles tróficos de consumidores, rara vez más, formando como hemos visto no sólo cadenas basadas en la predación o captura directa, sino en el parasitismo, el mutualismo, el comensalismo o la descomposición.Es de notar que en muchas especies distintas, categorías de individuos pueden tener diferentes maneras de nutrirse, que en algunos casos las situarían en distintos niveles tróficos. Por ejemplo las moscas de la familia Sarcophagidae, son recolectoras de néctar y otros líquidos azucarados durante su vida adulta, pero mientras son queresas (larvas) su alimentación típica es a partir de cadáveres (están entre los “gusanos” que se desarrollan durante la putrefacción).


Los anuros (ranas y sapos) adultos son carnívoros, pero sus larvas, los renacuajos, roen las piedras para obtener algas. En los mosquitos (fam. Culicidae) las hembras son parásitas hematófagas de animales, pero los machos emplean su aparato bucal picador para alimentarse de savia vegetal.

Tuesday, October 28, 2008

RADIACION ADAPTATIVA

La radiación adaptativa o evolución divergente es un proceso que describe la rápida especiación de una o varias especies para llenar muchos nichos ecológicos. Este es un proceso de la evolución cuyas herramientas son la mutación y la selección natural.La radiación adaptativa ocurre con frecuencia cuando se introduce una especie en un nuevo ecosistema, o cuando hay especies que logran sobrevivir en un ambiente que le era hasta entonces inalcanzable. Por ejemplo, los pinzones de Darwin de las islas Galápagos se desarrollaron de una sola especie de pinzones que llegaron a la isla. Otros ejemplos incluyen la introducción por el hombre de mamíferos predadores en Australia, el desarrollo de las primeras aves que repentinamente tuvieron la capacidad de expandir su territorio por el aire, o el desarrollo del lungfish durante el Devónico, hace cerca de 300 millones de años.La dinámica de la radiación adaptativa es tal que, dentro de un corto período de tiempo, muchas especies se derivan de una o varias especies ancestros. De este gran número de combinaciones genéticas, sólo unas pocas pueden sobrevivir con el pasar del tiempo. Tras el rápido desarrollo de muchas especies nuevas, muchas o la mayoría de ellas desaparecen tan rápidamente como aparecieron. Las especies sobrevivientes están casi completamente adaptadas al nuevo ambiente. El auge y caída de las nuevas especies está actualmente progresando muy lentamente, comparado con el brote inicial de especies.

Hay tres tipos básicos de radiación adaptativa. Estas son:

1. Adaptación general. Una especie que desarrolla una habilidad radicalmente nueva puede alcanzar nuevas partes de su ambiente. El vuelo de los pájaros es una de esas adaptaciones generales.
2. Cambio ambiental. Una especie que puede, a diferencia de otras, sobrevivir en un ambiente radicalmente cambiado, probablemente se ramificará en nuevas especies para cubrir los nichos ecológicos creados por el cambio ecológico. Un ejemplo de radiación adaptativa como resultado de un cambio ambiental fue la rápida expansión y desarrollo de los mamíferos después de la extinción de los dinosaurios.
3. Archipiélagos: Ecosistemas aislados tales como islas y zonas montañosas, pueden ser colonizados por nuevas especies las cuales al establecerse siguen un rápido proceso de evolución divergente. Los pinzones de Darwin son ejemplos de una radiación adaptativa que ocurrió en un archipiélago.

Tuesday, October 14, 2008

SERES BIOTICOS Y ABIOTICOS

Factores ABIOTICOS

Todos los factores químico-físicos del ambiente son llamados factores abióticos (de a, "sin", y bio, "vida). Los factores abióticos más conspicuos son la precipitación (lluvia más nevadas) y temperatura; todos sabemos que estos factores varían grandemente de un lugar a otro, pero las variaciones pueden ser aún mucho más importantes de lo que normalmente reconocemos.No es solamente un asunto de la precipitación total o la temperatura promedio. Por ejemplo, en algunas regiones la precipitación total promedio es de más o menos 100 cm por año que se distribuyen uniformemente por el año. Esto crea un efecto ambiental muy diferente al que se encuentra en otra región donde cae la misma cantidad de precipitación pero solamente durante 6 meses por año, la estación de lluvias, dejando a la otra mitad del año como la estación seca.Igualmente, un lugar donde la temperatura promedio es de 20º C y nunca alcanza el punto de congelamiento es muy diferente de otro lugar con la misma temperatura promedio pero que tiene veranos ardientes e inviernos muy fríos.De hecho, la temperatura fría extrema –no temperatura de congelamiento, congelamiento ligero o varias semanas de fuerte congelamiento– es más significativa biológicamente que la temperatura promedio. Aún más, cantidades y distribuciones diferentes de precipitación pueden combinarse con diferentes patrones de temperatura, lo que determina numerosas combinaciones para apenas estos dos factores.Pero también otros factores abióticos pueden estar involucrados, incluyendo tipo y profundidad de suelo, disponibilidad de nutrientes esenciales, viento, fuego, salinidad, luz, longitud del día, terreno y pH (la medida de acidez o alcalinidad de suelos y aguas).Como ilustración, tomemos el terreno: en el Hemisferio Norte, las laderas que dan hacia el norte generalmente presentan temperaturas más frías que las que dan hacia el sur. O considere el tipo de suelo: un suelo arenoso, debido a que no retiene bien el agua, produce el mismo efecto que una precipitación menor. O considere el viento: ya que aumenta la evaporación, también puede tener el efecto de condiciones relativamente más secas. Sin embargo, estos y otros factores pueden ejercer por ellos mismos un efecto crítico.Resumiendo, podemos ver que los factores abióticos, que se encuentran siempre presentes en diferentes intensidades, interactúan unos con otros para crear una matriz de un número infinito de condiciones ambientales diferentes.

Factores BIÓTICOS

Un ecosistema siempre involucra a más de una especie vegetal que interactúan con factores abióticos. Invariablemente la comunidad vegetal está compuesta por un número de especies que pueden competir unas con otras, pero que también pueden ser de ayuda mutua.Pero también existen otros organismos en la comunidad vegetal: animales, hongos, bacterias y otros microorganismos. Así que cada especie no solamente interactúa con los factores abióticos sino que está constantemente interactuando igualmente con otras especies para conseguir alimento, cobijo u otros beneficios mientras que compite con otras (e incluso pueden ser comidas). Todas las interacciones con otras especies se clasifican como factores bióticos; algunos factores bióticos son positivos, otros son negativos y algunos son neutros.

EL ORIGEN DE LA VIDA

Es probable que el cosmos, integrado por todo aquello que pertenece a la realidad, tuviera su origen hace unos 10,000 a 20,000 millones de años. La región específica del cosmos en la que se encuentra nuestro planeta es el universo denominado vía láctea. Por universo se entiende un conjunto formado por millones de estrellas, aunque el vulgo suele aplicar este nombre al cosmos entero. El sol es una estrella de medianas dimensiones situada aproximadamente a dos terceras partes de la distancia entre el centro y la periferia de la Vía láctea. El sol y sus satélites lanetarios constituyen el sistema solar. La teoría más aceptada sobre el origen del cosmos establece que éste surgió hace muchos millones de años como resultado de una descomunal explosión de materia densamente condensada: teoría del big bang o de la gran explosión. Los vestigios de esa antiquísima explosión se han estudiado mediante poderosos telescopios que hoy día captan la luz emitida hace millones de años por estrellas muy lejanas. Quizá nuestro sistema solar surgió como una nube giratoria de gases que acabaron por condensarse formando el sol y los planetas. La Tierra debió iniciar su existencia como una masa gaseosa, pero después de un tiempo se formó un núcleo de metales pesados como el níquel y el plomo. Por encima de ese núcleo hay un manto grueso y, finalmente, una corteza relativamente delgada que constituye la superficie del planeta. Una teoría postula que en un principio la Tierra era fría, pero que se calentó al generarse colosales fuerzas de compresión durante la sedimentación y la síntesis de los materiales del núcleo. La radiactividad también produjo enormes cantidades de calor. Después de unos 750 millones de años, la Tierra se enfrió lo suficiente para que se formara la actual corteza. Así, puede decirse que vivimos en un planeta relativamente frío. El universo en el cual nosotros vivimos no es el único en el cosmos y se asemeja a otros tipos de universos. Asimismo, el Sol no es un tipo especial de estrella. Tampoco es rara su posición y, en cuanto a dimensiones, cabe decir que es de mediana estrella. El planeta Tierra es más grande que Mercurio pro mucho más pequeño que Júpiter o Saturno. Todas las teorías científicas acerca del origen de la vida exigen que la edad de la Tierra sea de varios miles de millones de años. Se tienen pruebas que apoyan esa suposición. Una de las líneas de evidencia se basa en la observación de otros universos y en los estudios de las atmósferas de nuestros planetas vecinos. Son dos las principales teorías acerca del origen de la vía. La teoría creacionista, basada en gran medida en la narración bíblica del Génesis, afirma que la Tierra no tiene más de 10,000 años de edad, que cada especie fue creada por separado durante un breve lapso de actividad divina ocurrido hace unos 6,000 años y que cada especie tiene a mantener a través del tiempo su peculiaridad única y bien definida. El creacionismo científico, un replanteamiento reciente de la teoría creacionista postulado por un grupo de geólogo e ingenieros conservadores, fue causa en Estado Unidos de una serie de infructuosas batallas legales provocadas por los fundamentalistas, quienes se empeñaban en que los sistemas escolares laicos estadounidenses incluyeran la teoría creacionista como parte de las clases de biología, en las que por supuesto se enseña el concepto de evolución. La otra teoría (evolucionista) afirma que la vida surgió en un punto selecto ubicado en el extremo superior del espectro continuo de ordenamientos cada vez más complejos de la materia. Es decir, que cuando la materia se vuelve suficientemente compleja aparecen las características asociadas con la vida. A pesar de que ésta es una teoría mecanicista, en ella se dio cabida a epifenómenos biológicos como el amor, la conciencia, la moralidad, etc. cualidades que aparecen en las formas biológicas más danzadas; por ejemplo, el ser humano. Los biólogos se inclinan por un origen natural de la vida.

Wednesday, October 1, 2008

¿QUE ES ECOLOGIA?

Si bien la ecología es una ciencia nueva, los seres humanos estudiaron ecología y aplicaron sus conocimientos ecológicos desde la más remota antigüedad. Los pueblos prehistóricos debían saber algo de la ecología del trigo y del maíz para que pudieran cultivarlos y obtener buenas cosechas.
Teofrasto, antiguo botánico griego, suele ser llamado el “primer ecólogo verdadero” porque fue el primero que escribió acerca de las plantas en función de su hábitat, es decir, del lugar donde viven, como el bosque o el pantano. Los indios de las planicies norteamericanas sabían mucho de la ecología del bisonte, del cual depende su existencia. Hoy día utilizamos a menudo conocimientos ecológicos sin siquiera saberlo; por ejemplo, cuando queremos tener una extensión de tierra cubierta de césped en un lugar sombrío plantamos semillas de una clase de césped que crece bien a la sombra.
Sin embargo, la mayoría de la gente no piensa en términos ecológicos.
Cuando vemos un pájaro o una flor silvestre, lo primero que preguntamos es: “Qué clase de pájaro o de flor es?” Casi todo el mundo se contenta con conocer los nombres de algunos de los organismos vivientes que encuentra en la naturaleza que lo rodea. Quizás usted sea el tipo de persona que se interesa por indagar algo más y pregunta: “Qué hace?” Acaso quiera conocer el papel del organismo en su medio, y cómo afecta a otros organismos y es afectado, a su vez, por ellos. Los ecólogos se interesan por los mismos problemas.
Aunque el hombre utiliza conocimientos ecológicos desde hace miles de años, la ecología es una de las ciencias más nuevas. Durante muchos siglos, los científicos centraron sus esfuerzos en establecer la nomenclatura de los animales y vegetales que descubrían y en describir los especimenes muertos que coleccionaban. Gradualmente, a medida que resultaba más fácil responder al interrogante “Qué es?”, empezaron a estudiar los efectos del medio sobre los organismos vivos. Durante el siglo XIX, por ejemplo, los hombres de ciencia investigaron los efectos de la duración del día sobre la migración de las aves y la influencia de la humedad sobre el desarrollo de los insectos. Se publicaron centenares de libros acerca del comportamiento animal y de la distribución de los animales y vegetales sobre la superficie del planeta.

Empero, el interés se centraba en los organismos individuales. Sin embargo, en las postrimerías del siglo XIX y comienzos del siglo XX los científicos empezaron a estudiar ecología puede ayudarnos a aprender las “reglas de la naturaleza” de las que depende nuestra supervivencia.
Los seres recurren cada vez más a la ecología y a los ecólogos en busca de consejo e información acerca de la manera de convivir junto a la naturaleza, sin destruir nuestro vivificante entorno. Pero muchas veces no hay respuestas o éstas sólo son parciales.
La ecología es una ciencia nueva y los ecólogos saben muy poco acerca de la mayoría de las partes de nuestro planeta especialmente los trópicos y los océanos. Algunos de los principios ecológicos aceptados durante muchos años ahora son cuestionados y sufren profundos cambios.
Uno de los ejemplos más conocidos es la clásica historia de la manada de ciervos de Kaibab que podemos encontrar en casi todos los textos de ecología. Según cuenta la historia, en 1907 vivían cerca de 4000 ciervos en la Meseta de Kaibab, en el Estado de Arizona. Los habitantes de la región exterminaron a la mayoría de los lobos, pumas y coyotes que devoraban a los ciervos. La manada de ciervos aumentó enormemente, y hacia 1924 ascendía a 1 00.000 animales. Los ciervos destruyeron o causaron daños a la mayor parte de sus reservas alimentarias y en dos inviernos sucesivos más de la mitad de ellos murieron de hambre. Su número disminuyó aun más en los años siguientes, hasta estabilizarse finalmente en unas 10.000 cabezas.
La historia de la manada de ciervos de Kaibab se citaba frecuentemente como un buen ejemplo de lo que sucede cuando se eliminan los controles naturales sobre el número de ejemplares de ciervos vivos. Sin embargo, en 1970 un zoólogo neozelandés llamado Graeme Caughley publicó en la revista Ecology un articulo en el que cuestionaba los hechos y las conclusiones del caso de Kaibad.


En lugar de aceptar lo que leyó en los libros, Caughley investigó los informes originales de los observadores de Kaibab y llegó a la conclusión de que las estimaciones acerca del número de ciervos eran inconsistentes y poco confiables. La cantidad de ciervos disminuyó efectivamente en algún momento del lapso de 1924 a 1930, y la declinación fue precedida probablemente por un período en que se registró un aumento del número de animales. “Cualquier conclusión adicional es especulativa”, escribió el doctor Caughley. Señaló, además, que el incremento del número de ciervos, cualquiera que haya sido, coincidía con una gran disminución de las cabezas de ganado vacuno y lanar autorizadas a pastar en la Meseta de Kaibab. A causa de la menor cantidad de cabezas de ganado, había más alimento para los ciervos. Este factor, por sí solo, puede haber producido un incremento del número de ciervos. No hay ninguna prueba de que el aumento se haya debido a la reducción del número de lobos, pumas y coyotes.
Nunca se conocerán los hechos reales del caso de la Meseta de Kaibab, y por ello es preciso desecharlo como un ejemplo aparentemente adecuado de una idea ecológica. En la ciencia rápidamente cambiante de la ecología muchas otras ideas fueron refutadas y revisadas. Sin embargo, hay algunos descubrimientos acerca del modo de “funcionamiento” de la naturaleza que probablemente no cambiarán mucho con el tiempo. Al conocer algunas ideas básicas de este funcionamiento se empezará a comprender que los seres humanos, junto con todo el resto de la naturaleza, se hallan unidos por los hilos de una compleja pero fascinante telaraña. La ecología estudia precisamente ese admirable tejido.

Tuesday, September 30, 2008

EVOLUCION BIOLOGICA



La evolución biológica es el proceso continuo de transformación de las especies a través de cambios producidos en sucesivas generaciones, y que se ve reflejado en el cambio de las frecuencias alélicas de una población.

Charles Darwin, padre de la teoría de la evolución por selección natural
Generalmente se denomina evolución a cualquier proceso de cambio en el tiempo. En el contexto de las Ciencias de la vida, la evolución es un cambio en el perfil genético de una población de individuos, que puede llevar a la aparición de nuevas especies, a la adaptación a distintos ambientes o a la aparición de novedades evolutivas.
A menudo existe cierta confusión entre hecho evolutivo y teoría de la evolución. Se denomina hecho evolutivo al hecho científico de que los seres vivos están emparentados entre sí y han ido transformándose a lo largo del tiempo. La teoría de la evolución es el modelo científico que describe la transformación evolutiva y explica sus causas.