Tuesday, March 24, 2009

HARDY-WEINBERG

En genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibro de Hardy-Weinberg o ley de Hardy-Weinberg), que recibe su nombre de G. H. Hardy y Wilhelm Weinberg, establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación.


Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo.En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.

Wednesday, March 11, 2009

Saturday, March 7, 2009

GENES LETALES

Los genes letales son una especie de genes mutantes y representan la forma más extrema de una serie que recibe la viabilidad en diferentes grados; es decir, son aquellos que provocan la muerte del organismo bajo ciertas condiciones.
Primero, hay que definir ciertos términos claves para entender el tema. Los cromosomas se dan, normalmente, en pares. Estos contienen genes y a cada par de ellos, localizados en el mismo lugar del cromosoma (locus) se les llama alelos y a dichos cromosomas, homólogos. Ahora, un heterocigoto es aquel individuo cuyos alelos difieren para una determinada característica (Aa, por ejemplo). En consecuencia, un homocigoto es aquel que tiene los alelos iguales (AA o aa). En los primeros, uno de los genes es dominante (A) y el otro recesivo (a), por tanto la característica dominante es la que se manifestará. Por su parte, los homocigotos, como sus genes son iguales, o es 100% dominante o 100% recesivo.
Al contrario de lo que se piense, los genes letales son más comunes de lo que parece. Cada ser humano porta, aproximadamente, 2 o 4 de ellos, pero el hecho de que estemos protegidos se lo debemos a ser heterocigotos para esos genes (pues los genes letales casi siempre son recesivos). Además, existen tantas clases de estos que es muy difícil que coincida una pareja con los mismos alelos que codifiquen para una misma enfermedad. Sin embargo, se da el caso. Ambas personas son heterocigotas, por lo que no presentan síntomas. Entonces, si tienen descendencia, ésta tenderá a morir en un 25% de los casos, probabilísticamente hablando, ya sea al nacer o posteriormente. La frecuencia de la expresión de los genes letales aumenta con la cercanía del parentesco entre la pareja, por lo que la unión entre primos-hermanos tiende más a presentar problemas de este tipo.
Por otro lado, la letalidad también tiene un período de efecto, el cual es muy variable. Existen casos donde, en el embrión, no se logran formar adecuadamente los órganos vitales, por lo que se produce un aborto espontáneo. También hay los que impiden la formación de gametos, la división normal del cigoto, los que matan enseguida del nacimiento o bien tiempo después, siendo estos últimos los más estudiados por ser observables "fácilmente". Un caso muy conocido es la hemofilia, enfermedad que impide la correcta coagulación sanguínea. En ella, el gen letal se encuentra ligado al cromosoma X de la madre. Por ello, las mujeres son portadoras del padecimiento y los varones son enfermos. Lo anterior se debe a que las mujeres son XX, por lo cual la letalidad es recesiva pues se halla otro cromosoma X que "amortigua" la deficiencia y protege al organismo, mientras que en el varón, XY, la letalidad es dominante, pues el cromosoma Y no posee tal protección, haciendo al X y a la enfermedad dominantes.

Friday, March 6, 2009

ESTRUCTURA DE NUCLEÓTIDOS

Los nucleótidos son moléculas orgánicas formadas por la unión covalente de un monosacárido de cinco carbonos (pentosa), una base nitrogenada y un grupo fosfato.
Son los monómeros de los ácidos nucleicos (ADN y ARN) en los cuales forman cadenas lineales de miles o millones de nucleótidos, pero también realizan funciones importantes como moléculas libres (por ejemplo, el ATP).


Cada nucleótido es un ensamblado de tres componentes:


Bases Nitrogenadas: Derivan de los compuestos heterocíclicos aromáticos purina y pirimidina.

Bases Nitrogenadas Purínicas: Son la adenina (A) y la guanina (G). Ambas forman parte del ADN y del ARN.


Bases Nitrogenadas Pirimidínicas: Son la timina (T), la citosina (C) y el uracilo (U). La timina y la citosina intervienen en la formación del ADN. En el ARN aparecen la citosina y el uracilo.


Bases Nitrogenadas Isoaloxacínicas: La flavina (F). No forma parte del ADN o del ARN, pero sí de algunos compuestos importantes como el FAD


Pentosa: El azúcar de cinco átomos de carbono; puede ser ribosa (ARN) o desoxirribosa (ADN).


Ácido Fosfórico: De fórmula H3PO4. Cada nucleótido puede contener uno (nucleótidos-monofosfato, como el AMP), dos (nucleótidos-difosfato, como el ADP) o tres (nucleótidos-trifosfato, como el ATP) grupos fosfato.

RECOMBINACION GENETICA EN BACTERIAS

La recombinación genética en bacterias tiene lugar cuando se transfieren fragmentos de DNA homólogo desde una célula donadora a una célula receptora por uno de estos tres procesos:


1.- Transformación: supone que el DNA donador se encuentra libre en el medio.


2.- Transducción: donde la transferencia del DNA donador está mediada por un virus.


3.- Conjugación: donde la transferencia implica un contacto célula-célula y la presencia de un plásmido conjugativo en la célula donadora.

USO DE BACTERIOFAGOS

Los bacteriófagos (también llamados fagos -del griego φαγετον (phageton), alimento/ingestión) son virus que infectan exclusivamente a bacterias.
Al igual que los virus que infectan células eucariotas, los fagos están constituidos por una cubierta proteica o cápside en cuyo interior está contenido su material genético, que puede ser ADN o ARN de simple o doble cadena, circular o lineal (en el 95% de los fagos conocidos es ADN de doble cadena), de 5.000 a 500.000 pares de bases. El tamaño de los fagos oscila entre 20 y 200 nm aproximadamente.
Los fagos son ubicuos y pueden ser encontrados en diversas poblaciones de bacterias, tanto en el suelo como en la flora intestinal de los animales. Uno de los ambientes más poblados por fagos y otros virus es el agua de mar, donde se estima que
puede haber en torno a 109 partículas virales por mililitro, pudiendo estar infectadas por fagos el 70% de las bacterias marinas.
Terapia fágica
Los fagos cumplen un papel de gran importancia en la biología molecular al ser utilizados como vectores de clonación para insertar ADN dentro de las bacterias y obtener como resultado bibliotecas genómicas. Hay una biblioteca de búsqueda de fagos específicos y sus usos terapéuticos en el Instituto Tbilisi, en la República de Georgia. La terapia fágica ha sido utilizada desde la década de 1940 en la ex Unión Soviética como una alternativa a los antibióticos para tratar infecciones bacterianas, ya que eliminar bacterias es lo que los fagos hacen mejor. El desarrollo de cepas bacterianas resistentes a múltiples drogas ha conducido a investigadores en medicina a reconsiderar a los fagos como una alternativa al uso de antibióticos.

OTROS USOS


En agosto de 2006, la FDA (Food and Drug Administration) de Estados Unidos aprobó el uso de bacteriófagos en ciertas carnes con el fin de acabar con la bacteria

ESTRUCTURA DE LAS HISTONAS

Las histonas son proteínas básicas, de baja masa molecular, muy conservadas evolutivamente entre los eucariotas y en algunos procariotas. Forman la cromatina junto con el ADN, sobre la base de unas unidades conocidas como nucleosomas.
Las cuatro histonas core, o nucleares, forman un octámero (paquetes de 8 moléculas) alrededor del cual se enrolla el ADN, en una longitud variable en función del organismo. Este octámero se ensambla a partir de un tetrámero de las histonas llamadas H3 y H4, al que se agregan dos heterodímeros de las histonas denominadas H2A y H2B. Las histonas externas, o linker, H1 (y H5 en aves) interaccionan con el ADN internucleosomal. El conjunto del ADN enrollado alrededor del octámero de histonas, junto con la histona H1 y una cierta longitud de ADN linker, o internucleosomal constituye lo que se conoce como nucleosoma. Las histonas core desarrollan un papel decisivo en el primer nivel de compactación del ADN dentro del núcleo, en la estructura conocida como nucleosoma. Las histonas linker, por otro lado, producen un empaquetamiento de orden superior de los nucleosomas.
Las histonas contienen un motivo estructural muy importante para los contactos moleculares dentro del octámero de histonas core, denominado histone fold (se podría traducir como pliegue de histona). Este motivo consiste en 65 aminoácidos que se estructuran en una organización extendida tipo hélice-hoja-hélice. En concreto, contiene una corta hélice alfa, un giro/hoja beta, una hélice alfa larga, otro giro/hoja beta, y otra hélice alfa corta.
Las histonas core pueden ser modificadas covalente y post-traduccionalmente, en general en sus extremos amino-terminales, mediante reacciones catalizadas por una serie de actividades enzimáticas. Éstas pueden ser citoplasmáticas, y actúan sobre las histonas previamente a su ensamblamiento en los nucleosomas, o bien, nucleares y afectan a histonas nucleosomales. Se ha postulado una teoría denominada histone code, o "código de histonas", según la que estas modificaciones pueden tener consecuencias en cuanto a: 1) La facilidad con la que proteínas asociadas a cromatina (factores transcripcionales, etc ...) podrían acceder al ADN. 2) La generación de combinaciones de modificaciones en un extremo de histona, o en varios dentro de un nucleosoma. 3) Las estructuras de eucromatina y heterocromatina serán en mayor medida dependientes de las concentraciones locales de histonas modificadas. En conclusión, estas modificaciones podrían extender la información potencial del material genético.